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1. Stationary geostrophic mode is recovered.

2. Total energy is conserved to within time truncation.
a. Coriolis force is energetically-neutral
b. Transport of KE is conservative
c. KE/PE exchange is equal and opposite. 

3. Potential vorticity is conserved to round-off. PV is 
compatible with an underlying thickness evolution equation.

4. It appears* that potential enstrophy can be dissipated.

Results hold for a wide class of meshes: Lat/Lon,  Stretched Lat/Lon, 
Voronoi Tessellations, Delaunay Triangulation and Conformally-
mapped cubed sphere meshes.

Analytic results for the nonlinear shallow-water equations:

Cutting to the chase ....
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∂h

∂t
+∇ · (hu) = 0

η = ∇× u + f

u⊥ = k× u

q =
η

h

Equation Set ....

PDE:

definition:

∂u
∂t

+ q(hu⊥) = −g∇ (h + hs)−∇K
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∂η

∂t
+ k ·∇×

[
ηu⊥

]
= 0

∂η

∂t
+∇ · [ηu] = 0

∂(hq)
∂t

+∇ · [hqu] = 0

Relationship between nonlinear Coriolis force
and potential vorticity flux

nonlinear Coriolis force

potential vorticity flux

The nonlinear Coriolis force IS the PV flux in the direction perpendicular to the velocity.

k ·∇×
[
∂u
∂t

+ q(hu⊥) = −g∇ (h + hs)−∇K

]
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locations of velocity points

locations of potential vorticity 

locations of thickness points

dual-mesh cell, Dv

primal-mesh cell, Pi

hi, Ki

qv

ue

ĥe

q̂e[hu]⊥e

∂hi

∂t
+

[
∇ ·

(
ĥeue

)]

i
= 0

∂ue

∂t
+ q̂e [hu]⊥e = [∇ (ghi + Ki)]e

Defining the discrete system
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de F⊥e =
∑

j

wj
e lj Fj

[
∇ · F⊥e

]
v
≡ δF⊥

v =
∑

i∈G(v)

bi
vδF

i

∑

i∈G(v)

bi
v = 1 and bi

v ≥ 0 ∀ i, v

δF⊥

v = I[δF
i ]

Deriving an auxiliary vertex thickness equation
(Because PV lives on vertices and PV means nothing without a thickness equation)

∂hi

∂t
+

[
∇ ·

(
ĥeue

)]

i
= 0

∂hi

∂t
+ [∇ · Fe]i = 0

hv
F⊥e

F⊥e

F⊥e
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∂hi

∂t
= −δF

i

δF
i ≡

[
∇ ·

(
ĥeue

)]

i

∂hv

∂t
= −I

[
δF
i

]
= I

[
∂hi

∂t

]

δF⊥

v = I[δF
i ]

Deriving an auxiliary vertex thickness equation
(Because PV lives on vertices and PV means nothing without a thickness equation)
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hvhv(t = 0) = I(hi(t = 0))If                                  , then     is bounded by
neighboring     for all time.hi
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∂ue

∂t
+ q̂e [hu]⊥e = [∇ (ghi + Ki)]e

Reconstructing the nonlinear Coriolis force
(recall that the nonlinear Coriolis force is the the PV-flux perpendicular to the velocity)

wj
e = −we

j

q̄ej = q̄je

∂ue

∂t
+ Q⊥e = [∇ (ghi + Ki)]e

de Q⊥e =
∑

j

wj
e lj Fj q̄ej

Fj = ĥjuj

dual-mesh cell, Dv

primal-mesh cell, Pi

hi, Ki

qv

ue

ĥe

Q⊥e

q̂j

q̂e

q̄ej

Fj

thickness flux

weights are equal and opposite

PV is symmetric

The nonlinear Coriolis force will be energetically neutral for any      . 
This is an extension to what Sadourny (1975) showed for regular meshes.

q̄ej
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∂ue

∂t
+ q̂e [hu]⊥e = [∇ (ghi + Ki)]e

∂ue

∂t
+ Q⊥e = [∇ (ghi + Ki)]e

Reconstructing the nonlinear Coriolis force
(recall that the nonlinear Coriolis force is the the PV-flux perpendicular to the velocity)

dual-mesh cell, Dv

primal-mesh cell, Pi

hi, Ki

qv

ue

ĥe

Q⊥e

q̂j

q̂e

q̄ej

Fj

∂

∂t
(hv) +

1
Av

∑

e∈G(v)

F⊥e dce = 0

∂

∂t
(hvqv) +

1
Av

∑

e∈G(v)

Q⊥e dce = 0

The curl of the above eq, lead to the below eq.

For a uniform PV field, the above eq reduces 
(identically) to the vertex thickness eq.

The evolution of the discrete velocity field is
compatible with the evolution of a valid, 
discrete PV equation. The compatibility holds
to round-off.
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Some results using this scheme with
quasi-uniform SCVTs.
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Quasi-Uniform 40962 mesh, ~120 km resolution
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Quasi-Uniform 40962 mesh, ~120 km resolution
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Moving to SWTC#5 ....
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Results of scheme with quasi-uniform meshes:
New scheme is competitive with existing models.
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Some results from the nested, variable-resolution SCVT
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Nested, Conformal, Variable-Resolution Meshes

Simulation details: 
RK4 time integration, 
centered-in-space 
numerics, no 
dissipation.
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SWTC#2 at Day 50.

uniform 40962 nested 82547

Maximum error is approximately a factor of 10 larger on the nested grid. Since this is
the first nested mesh that we have constructed, I am guessing that we can bring this 
error down significantly.
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SWTC#5:  Day 15, thickness field (m)

Indistinguishable.
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SWTC#5:  Day 15, relative vorticity (1/s)

Essentially Indistinguishable.
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SWTC#5:  L2 error norm of thickness.

nested 82547
(green)

uniform 40962
(blue)
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Results: Error Norms of thickness at day 15

uniform 40962 nested 82547
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SWTC#5:  Kinetic energy tendency due
to nonlinear Coriolis term.
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SWTC#5:  Globally-averaged 
potential enstrophy evolution.

uniform 40962

nested 82547
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Results of scheme with variable resolution nested mesh:
Preliminary results are very promising.
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We think that this approach is analytically sound ....
but can we get the throughput?

Block decomposition:
    Distribute blocks across processors
    Maximize area to circumference ratio
    Use for load balancing.

Approach:
    The method requires an unstructured grid approach.
    Targeting hybrid CPU/GPU machines first.
    Start with a stacked shallow-water model.
    Vectorize over the vertical layer index.
   Group operators together and push to GPU.

LANL Cerrillos

This is joint LANL / NCAR MMM development project.

Assuming that we can get the required CPU efficiency  and 
scaling, LANL will likely pursue the construction of an 
ocean dynamical core and NCAR MMM will consider the 
construction of an atmosphere dynamical core.



2009 PDEs on the Sphere

Summary

We have developed a numerical scheme suitable for
climate simulation that is applicable to a wide class 
of meshes using C-grid staggering.

The results on quasi-uniform SCVTs are competitive 
with other FV schemes available.

The results on non-uniform SCVTs are promising. 
Long, stable and acceptably accurate simulations of 
the SW system without dissipation are possible. 


